In Situ Localized Growth of Ordered Metal Oxide Hollow Sphere Array on Microheater Platform for Sensitive, Ultra-Fast Gas Sensing.

نویسندگان

  • Ameya Rao
  • Hu Long
  • Anna Harley-Trochimczyk
  • Thang Pham
  • Alex Zettl
  • Carlo Carraro
  • Roya Maboudian
چکیده

A simple and versatile strategy is presented for the localized on-chip synthesis of an ordered metal oxide hollow sphere array directly on a low power microheater platform to form a closely integrated miniaturized gas sensor. Selective microheater surface modification through fluorinated monolayer self-assembly and its subsequent microheater-induced thermal decomposition enables the position-controlled deposition of an ordered two-dimensional colloidal sphere array, which serves as a sacrificial template for metal oxide growth via homogeneous chemical precipitation; this strategy ensures control in both the morphology and placement of the sensing material on only the active heated area of the microheater platform, providing a major advantage over other methods of presynthesized nanomaterial integration via suspension coating or printing. A fabricated tin oxide hollow sphere-based sensor shows high sensitivity (6.5 ppb detection limit) and selectivity toward formaldehyde, and extremely fast response (1.8 s) and recovery (5.4 s) times. This flexible and scalable method can be used to fabricate high performance miniaturized gas sensors with a variety of hollow nanostructured metal oxides for a range of applications, including combining multiple metal oxides for superior sensitivity and tunable selectivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast-Response, Sensitivitive and Low-Powered Chemosensors by Fusing Nanostructured Porous Thin Film and IDEs-Microheater Chip

The chemiresistive thin film gas sensors with fast response, high sensitivity, low power consumption and mass-produced potency, have been expected for practical application. It requires both sensitive materials, especially exquisite nanomaterials, and efficient substrate chip for heating and electrical addressing. However, it is challenging to achieve repeatable microstructures across the films...

متن کامل

Hydrogen sensing by localized surface plasmon resonance in colloidal solutions of Au-WO3-Pd

Nowadays, hydrogen has attracted significant attention as a next generation clean energy source. Hydrogen is highly flammable, so detection of hydrogen gas is required. Gold nanoparticle based localized surface plasmon resonance (LSPR) is an advanced and powerful sensing technique, which is well known for its high sensitivity to surrounding refractive index change in the local environment. We p...

متن کامل

Smart Chemical Sensor application of ZnO Nanowires grown on CMOS compatible SOI Microheater platform

Smart chemical sensor based on CMOS(complementary metal-oxide-semiconductor) compatible SOI(silicon on insulator) microheater platform was realized by facilitating ZnO nanowires growth on the small membrane at the relatively low temperature. Our SOI microheater platform can be operated at the very low power consumption with novel metal oxide sensing materials, like ZnO or SnO2 nanostructured ma...

متن کامل

Miniaturized ceramic platform for metal oxide gas sensors array

In work is developing an ultra-fast, low cost and technology flexible process for production array of ceramic MEMS microhotplates for using in semiconductor gas sensors orientated to small series applications, where is sufficient to produce 10-100 samples with a different layout of heaters and membrane per day.

متن کامل

Metal-Organic Framework Templated Synthesis of Ultrasmall Catalyst Loaded ZnO/ZnCo2O4 Hollow Spheres for Enhanced Gas Sensing Properties

To achieve the rational design of nanostructures for superior gas sensors, the ultrasmall nanoparticles (NPs) loaded on ternary metal oxide (TMO) hollow spheres (HS) were synthesized by using the polystyrene (PS) sphere template and bimetallic metal-organic framework (BM-MOFs) mold. The zinc and cobalt based zeolite imidazole frameworks (BM-ZIFs) encapsulating ultrasmall Pd NPs (2-3 nm) were as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 9 3  شماره 

صفحات  -

تاریخ انتشار 2017